If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16q^2+218q+574=0
a = 16; b = 218; c = +574;
Δ = b2-4ac
Δ = 2182-4·16·574
Δ = 10788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10788}=\sqrt{4*2697}=\sqrt{4}*\sqrt{2697}=2\sqrt{2697}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(218)-2\sqrt{2697}}{2*16}=\frac{-218-2\sqrt{2697}}{32} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(218)+2\sqrt{2697}}{2*16}=\frac{-218+2\sqrt{2697}}{32} $
| 5(3^x)=135 | | 10(4.7=-5+0.6p) | | 1/4f=8 | | 8(x-2)=14+7x | | 5(4^x)=80 | | 4x+60=5x+53= | | 10(-4.7=-5+0.6p | | 2*1-y=5 | | s/35=6 | | 8x+5=15+10x | | -4.7=-5+0.6p | | -4+x+4=-5/8+4 | | 7u^2-20u-3=0 | | (2x-10/5)=8 | | (6g-20)/2=1/4 | | -2.5x=-4.5 | | 9y+16=3y+64= | | 5b+4b-4=23 | | 5/9+y/3=8/9 | | -9+13=x | | 12.5x+3/8=-9 | | -6(p+2)-p-4=-7(p+4)+12 | | 5n+3=8n+3 | | 4^x-3=5^2x+1 | | 8x+120=4x+240= | | t/6=5.2 | | 7x-261=x | | 0.6(5x+10)=1.8-(x+2) | | -17p-6(3-4p)=4(p-3)-15 | | (5x-2)(5x-2)=25x^2-4 | | (3g-10)/2=1/4 | | 15a+140-15a=21a+147 |